Homework 8

Due November 29th on paper at the beginning of class. Justify your answers. Please let me know if you have a question or find a mistake. The book is Fisher's https://archive.org/details/ complex-variables-2ed-dover-1999-fisher/page/n23/mode/2up.

1. Let $f(z)=\sum_{n=-1}^{1} z^{n}$. Let $F(z)$ be the antiderivative of $f(z)$ on $\{z: z \neq 0$ and $\operatorname{Arg} z \neq-\pi / 4\}$ such that $F(2)=3$. What is $F(i)$?
2. How does the answer to $\# 1$ change if $-\pi / 4$ is replaced by $\pi / 4$?
3. Show that if f and g are any complex-valued functions such that $|f(z)+g(z)|<|f(z)|$ for all z in some set Γ, then neither f nor g can have any zeroes on Γ.
4. (a) Find the velocity function $v(z)$ for Example 1 from page 4 of Eremenko's https://www. math.purdue.edu/~eremenko/dvi/airplanes.pdf.
(b) Find constants a, b, and c such that $v\left(e^{i \theta}\right)=1+a e^{b i \theta}=c e^{i \theta} \sin \theta$.
(c) What property of the constant c above implies that $v\left(e^{i \theta}\right)$ is perpendicular to $e^{i \theta}$?
(d) Sketch the vector field corresponding to $v(z)$ on the circle $|z|=1$ (as in Section 2.1.1 of Fisher), and mark the points where $\left|v\left(e^{i \theta}\right)\right|, \operatorname{Re} v\left(e^{i \theta}\right)$, and $\operatorname{Im} v\left(e^{i \theta}\right)$ achieve their maximum and minimum values.

Hints: For \#3, show that if $f(p)=0$ or $g(p)=0$, then $|f(p)+g(p)| \geq|f(p)|$. For \#4a, substitute $f(z)$ into equation (3) on page 1 of Eremenko. For \#4c use page 8 of Fisher.

